
Automating ATLAS control room anomaly detection with deep learning

Automating ATLAS control room anomaly detection with deep learning
Avery Hanna,1, 2 Mario Campanelli (Supervisor),3 and Antoine Marzin (Supervisor)1
1)CERN, European Organization for Nuclear Research 1211 Geneva 23, Switzerland,
2)Physics Department, Tufts University, 574 Boston Ave, Boston, MA, USA
3)Physics Department, University College London, Gower St, London WC1E 6BT, United Kingdom

(Dated: 29 August 2024)

To ensure high-quality data acquisition at ATLAS, the detector status is monitored by a team of shifters in the control
room where they watch plots of the incoming data and compare them with the expected standards. We propose the use
of an online anomaly detection model to facilitate the detection of issues during data-taking and decrease the workload
of the control room staff. Our model is a predictive long short-term memory autoencoder that takes in time-series data
on a range of Level-1 rates and instantaneous luminosity and then, via unsupervised learning, learns to predict how
those rates will change such that the level of error between the prediction and real data can be used to classify the data
as clean or anomalous. We show that our model effectively detects anomalies in all features and that such an approach
shows promise for online use in the control room. This model can easily be adapted to run in real-time, alerting shifters
to potential anomalies as the data comes in.

I. INTRODUCTION

ATLAS, a general purpose detector at the LHC at CERN, is
a critical tool in expanding our understanding of the universe
at the most fundamental levels. For the work at ATLAS to be
of any use in the search for dark matter, in understanding the
Higgs boson better, or in any of the other applications we need
to get good data out and keep things running smoothly. Data
quality monitoring (DQM) is generally divided into two areas:
online and offline. Online DQM involves monitoring the data
in real time and allows for intervention to correct problems
that may arise. Offline DQM is a more rigorous sweep done
after acquisition to review the quality of data that has been
stored away and thus its usefulness for actual analyses. In this
report, we focus on the online step.

To ensure high-quality data acquisition at ATLAS, the de-
tector status is monitored by a team of shifters in the control
room. This can result in inconsistencies in anomaly classifi-
cation as different people may have different criteria in mind
when watching for anomalies. Each person is also working
an 8-hour shift and monitoring many plots which naturally
results in a certain level of human error. Finally, this cur-
rent system involves a high personnel demand and adds to the
workload of the many PhD students, postdocs, and others who
work these shifts. We aim to address these problems, improv-
ing the quality of anomaly detection (AD) and decreasing the
workload of the control room staff by developing a machine
learning model to watch the incoming time-series data on the
status of the detectors and flag anomalies.

Research in AD has been of utmost importance to the ex-
periments at the LHC which require innovative approaches to
filter good and interesting data out of the masses of output
from their detector systems. Investigations on AD approaches
for DQM are currently underway at other LHC experiments
in addition to our work at ATLAS. Many of these approaches
rely on autoencoders1,2, especially variational autoencoders3.

II. DATA SELECTION AND PROCESSING

With almost 1 billion collisions per second, if we were to
read out all the data produced at ATLAS it would amount to
60 TB of data per second which is too much to handle let alone
store4. To address this challenge, the data passes through
the trigger and data acquisition (TDAQ) system which filters
down the data just to what is most relevant to the researchers
using this data. The first pass in this filtering is the Level-1
(L1) trigger which is based on custom hardware to reduce the
acquisition rate from 40 MHz to 100 kHz5. In our model, we
focus on this level of the data to keep as much information as
possible.

TABLE I. Definitions of input features used in model.

Variable Abbreviation Meaning
MSPC_FW Muon rate in forward detector on side C
MSPC_EC Muon rate in endcap on side C
MSPC_BA Muon rate in barrel on side C
MSPA_FW Muon rate in forward detector on side A
MSPA_EC Muon rate in endcap on side A
MSPA_BA Muon rate in barrel on side A
L1_MU12BOM Central muon rate with pT value of 12 GeV
L1_MU14FCH Muon rate with pT value of 14 GeV
L1_eEM26T Tight electron rate with energy greater than 26 GeV
L1_eEM26M Medium electron rate with energy greater than 26 GeV
L1_jXE120 Missing transverse energy greater than 120 GeV
L1_jJ500 Small-R jets with 500 Et threshold rate
L1_jJ180 Small-R jets with 180 Et threshold rate
L1_jJ160 Small-R jets with 160 Et threshold rate

Here we focus on using L1 trigger item rates and L1 muon
sector logic inputs — considered primary items since they are
not pre-scaled and are used as main triggers in physics analy-
ses. The trigger rates represent the frequency with which we
detect different particles with different energy thresholds. We
include rates looking at electrons, muons, missing transverse
energy, and jets. The muon sector logic inputs give us insight
into the muon rates by section of the detector. We also incor-
porate pileup — the average number of collisions per bunch

Automating ATLAS control room anomaly detection with deep learning 2

FIG. 1. Test data by feature. a) Raw data for region of interest as acquired directly from database. b) Data after normalizing by pileup and
scaling with robust scaling procedure. Shows data as it will be when input into model.

crossing which is kept constant for around the first half of the
run and then decays toward the end as there are fewer and
fewer protons in each bunch6. Rather than including it as its
own feature, we normalize the features discussed above by it.
As seen in Figure 1, this results in a flattening of the plots of
each feature in time. We also note that we see more variation
and spikes in our data since we are looking at a smaller y-axis
range. This is helpful for our model because via our scaling
and loss functions we can treat these fluctuations as outliers
and limit their influence on our model, instead learning the
real trends in the data. In particular, we apply robust scaling
which centers the data around 0 by shifting by the median and
scales according to the interquartile range7.

We get the raw input data from archived monitoring data by
feature and merge them all together based on the timestamp.
In the end we want a single data point for each luminosity
block (LB) where an LB is a period in time (around a minute)
where the conditions are assumed to be unchanged. To satisfy
this condition, we pass over the data and when there are mul-
tiple data points for a single LB, we average them into one.
If we identify a missing LB or a series of five or less missing
LBs, we take the average of the data points on either side of
the gap to fill it in. If there is a gap greater than five, we treat
each section as a separate run.

In Table 1 we see the details of the features used in our
model. Note that our current model uses only 14 features but
the range of features monitored in the control room even just
at the L1 trigger desk is much larger, not to mention the inputs
available beyond this subsection of the data. We chose these
features since they are representative of a range of particles
but are similar in their behavior, staying relatively constant

with constant pileup and decaying with pileup. Some of the
features we considered including but ended up dropping for
this initial iteration of our model because of the consistently
large variations between real and predicted values were the
busy rates which indicate when a queue has reached capacity
so data is dropped and the empty rates where there are no
collisions.

III. MODEL ARCHITECTURE

In the process of defining our architecture, we explored the
use of autoencoders and long short-term memory (LSTM) net-
works using TensorFlow, motivated by prior research in simi-
lar scenarios2. Here we expound on the development process
by discussing several iterations of our model to illustrate our
motivations for and confidence in the final product.

A. Autoencoders

Our first pass at a model was a simple autoencoder that took
one sample in time and attempted to reproduce it. An autoen-
coder is made up of an encoding network and a decoding net-
work where in between we get an encoded representation of
our data with a reduced dimensionality. The model is trained
exclusively on clean data — runs with a normal amount of
fluctuation and no significant anomalies — so that when it is
given clean data in deployment, its output is quite close to the
original input. On the other hand, if it sees an anomalous in-
put in deployment, its procedure for generating the output will

Automating ATLAS control room anomaly detection with deep learning 3

not be as effective and we will observe a higher mean-squared
error (MSE) — as defined in equation 1 — between the output
and input values.

MSE =
1
n

n

∑
i=1

(yi − y′i)
2 (1)

This model was quite effective at reproducing the input it
was given and when MSE was plotted against LBs, the spikes
occurred at LBs where there were also spikes in the input data.
This was a promising indicator that the model could be used
to identify anomalies in the data. The pitfall of this model,
however, was that it only looked at a single LB of data. So
even if it could identify anomalies in the data, it would only
be effective for single point anomalies and it would not have
the capacity to pick up on small variations that occur over time
that we may still want to flag as anomalies. Additionally, these
point anomalies are some of the easiest to spot as a shifter
watching the data by eye so while a model like this could help,
it does not particularly improve on the current state of human-
based anomaly detection.

B. LSTM networks

To move beyond detecting single point anomalies with an
autoencoder, we turned to LSTM networks — a type of recur-
rent neural network (RNN). As an RNN, LSTM networks in-
corporate feedback loops so that the output of past samples is
included in making decisions on the current sample. However,
it improves upon them by separating the paths for long-term
and short-term memories to avoid the problem of the explod-
ing/vanishing gradient that comes up with RNNs8.

In our case, LSTMs are helpful because they allow us to
look across several samples in time, giving the model more
context about what has been happening with the data as it
makes its decisions.

As a first step for incorporating LSTMs, we added an ad-
ditional LSTM network acting on the output of the earlier au-
toencoder such that the LSTM network took 5 of the MSE
values from the autoencoder and predicted what the next MSE
value should be. Then by comparing the prediction with the
real value and considering the error, we got an indicator of
whether there was an anomaly present or not in the data.

While this worked to an extent, it did not improve over the
original autoencoder structure on its own. The problem with
this model was that a full sample of input data got compressed
down to a single value before it was passed to the LSTM so
it was hard for the model to learn any real significance that
reflected what was happening with the input features. To ad-
dress this, we combined the two separate networks into one
with an LSTM autoencoder.

C. Non-predictive LSTM Autoencoder

As a first step in combining the benefits of these two ap-
proaches, we build an LSTM autoencoder which functioned

FIG. 2. Model Architecture. Structure of model with data flowing
from input on left to output on right.

the same as the autoencoder described above but instead of
dense layers in the encoder and decoder subsections, we used
LSTM layers. We compared the reconstructed time series data
to the original input and used this MSE to classify the data as
clean or anomalous based on how it compared to our threshold
value.

This showed a lot of promise, with nice ROC curves but
with a higher false positive rate compared with our final model
described below. By modifying the output of our model we
were able to lower the false positive rate and improve the
alignment between predicted and real values.

D. Final model: Predictive LSTM Autoencoder

Our predictive LSTM autoencoder combines the benefits of
the autoencoder and LSTM network we previously explored.
It takes in time-series data of 5 consecutive samples (where
each sample is made up of 14 values corresponding to the 14
features used) such that the input spans 5 LBs (i.e. 5 minutes).
As output, it generates a prediction of what the next sample
should look like, in other words, predicting the values of each
feature one minute into the future. The flow of data through
this network is summarized in Figure 2. As we did with the
earlier autoencoder model, we train on clean data such that
the error we see between the prediction and real data serves
as an indicator of how anomalous the input data was. We take
the MSE between the predicted and real features and average
over all of them. We set a classification threshold for MSE
such that anything below that threshold is labeled clean and
anything above is labeled anomalous.

In this way, we get the benefit of the LSTMs looking across
time, giving context to what is happening with the data and
how things are changing and the autoencoder shape bringing
the data down to a lower dimensionality forces the model to
extract the key components from the input data set, dropping
the noise in the process. Another nice benefit of this model is

Automating ATLAS control room anomaly detection with deep learning 4

it is quite small, with only four layers and the LSTM layers of
size nine. This will be especially important as the final version
of this model will step up the number of input features signif-
icantly — but by compressing the data with our autoencoder
we can limit the resource demand attached to that increase.

IV. MODEL TRAINING

For the sake of this discussion, we will consider the case of
training the model across 10 runs (specifically runs 476875,
476428, 476276, 476785, 476718, 479279, 479269, 479239,
480188, and 480197) and testing the model with a single run
(480219). This gives the model about 8000 data points for
training and about 900 for testing.

As our cost function, we initially started with MSE which is
the standard for these types of model applications (see equa-
tion 1).

However, this caused a large separation in the training and
test loss since there were a few significant outliers in the train-
ing data that, when the difference between the real outliers and
predicted normal data was squared contributed significantly to
the loss. Since we do not want these various outliers that can
be present in our training data to have a large impact on our
training, we chose to use Huber loss instead. Huber loss acts
similarly to MSE for small errors where it is quadratic but for
larger errors like those we get with the outliers in our data, it
acts linearly. We use TensorFlow’s default Huber loss, so the
delta as seen in equation 2 is set to one.

HLδ (yi,y′i) =

{
1
2 (yi − y′i)

2 for |yi − y′i| ≤ δ

δ (|yi − y′i|− 1
2 δ) otherwise

(2)

We still observe a gap in the train and test loss as can be
seen in Figure 3 but it is a gap of around 0.2 whereas using
MSE results in completely separated loss curves with a gap of
around 1.2. We expect such a gap to appear because our test
data is an entirely new run and conditions tend to change in
the period between runs.

At one point, we explored the possibility of cutting out out-
liers from our training data. However, we did not see a sig-
nificant change in performance and we believe the use of Hu-
ber loss and the robust scaling described in the data selection
and processing section should be sufficient to limit their im-
pact on our model. Notably, if we plug the training data into
our model, the predictions it generates align closely with the
overall trends in the data but do not fluctuate with the various
outliers (see Figure 4). This is both a result of the tools de-
ployed and the actual autoencoder structure which allows us
to eliminate noise in the data reconstruction process.

V. MODEL PERFORMANCE

In modifying out model — from large architecture deci-
sions to hyperparameter tuning — we based our choices on a
few key criteria. We examined how predictions aligned with

FIG. 3. Loss Curves. The loss calculated for train and test data sets
over the course of 100 epochs.

FIG. 4. Real vs predicted training MSPC_BA. The predicted values
follow the shape of the training data closely but smooth out the noise
and outliers.

the test sample, classification performance on a modified test
set, and AD in real anomalous runs.

A. Validation on the test sample

Our first indicator of model performance is considering
how closely the model’s predictions for the test data align with
the data itself. Considering Figure 5, we observe that simi-
lar to the case with the training data, the prediction is mostly
smooth across time and tends to match the trends of the data
well as we would hope.

However, notably in the cases of MSPC_BA and
L1_MU14FCH, the predicted results are shifted in the y-
direction from the real data. Like with the difference in
loss curves, we expect this is the result of conditions hav-
ing changed in the test run so that the data does not align
well with what the model has seen before. One option we

Automating ATLAS control room anomaly detection with deep learning 5

are considering to resolve this is to retrain the model at reg-
ular intervals in real-time so that after say 30 LB of the new
run, the model would retrain and by incorporating the data of
the present run into training, it would adapt to any changes in
conditions. With this approach we would still expect to see
the shift between real and predicted at the beginning of the
run, but with each retraining, we would hope to see the two
curves match better and better.

In these real vs predicted plots, we also tend to notice that
our predicted value separates from the real in the low pile-up
region of the run (i.e. at the tailend). In Figure 5, this is espe-
cially noticeable in the case of L1_jXE120. With our methods
to squash the impact of outliers, we inadvertently squash the
impact of the real low data we get in this plot since it is at
an extreme. To address this, we recommend implementing
partwise scaling procedures such that the portion of the run
where pileup is flat is scaled separately from the region where
pileup is decaying. Further optimization of the model with a
specific focus on this region is also recommended. We tried
to improve the performance at the end of the run by duplicat-
ing that section in the training data so that there was more of
a balance between the amount of data in the flat pileup range
and the amount in the low pileup range, but we did not see a
significant impact on performance.

FIG. 5. Real vs predicted test data by feature. Overall trends in data
are consistent between real and predicted but some shifts in data and
poor performance in low pileup region.

B. Artificial anomalies

At the end of the day, what we really care about is how well
our model catches anomalies so we modified our test data,
introducing artificial anomalies, and assessed the output our

model generated when we fed it this modified sample. One of
these tests involved increasing a single feature by 5% over the
first 30 LBs. We generated 14 different modified datasets each
corresponding to a change in one of the 14 features. We then
plotted the receiver operating characteristic (ROC) curves for
each of those datasets as can be seen in Figure 6.

FIG. 6. ROC Curves. Each ROC curve corresponds to a test dataset
where a single feature has been modified by 5% for the first 30
LBs. The true positive rate is indicative of how often we label a
real anomaly anomalous and the false positive rate indicates how of-
ten we label a clean datapoint anomalous.

The resulting ROC curves indicate that our model is quite
effective at detecting this type of anomaly for any feature but
its success varies across the features. For the datasets with one
of MSPC_BA, MSPA_BA, L1_MU12BOM, L1_MU14FCH,
L1_jXE120, or L1_jJ500 modified, the area under the curve
(AUC) is in the range of 0.74-0.91 while the rest have an
almost perfect AUC of 0.98 or 0.99. These high values are
promising because they indicate we can get a high true posi-
tive rate with a very low false positive rate. Keeping the false
positive rate low is of critical importance because we expect
much more clean data than anomalies so even a low false posi-
tive rate can have a big impact on the usefulness of the models
when it is operating across the large amount of negative sig-
nals.

We have also explored how these ROC curve results change
with different sizes of anomalies, affecting different numbers
of LBs, and occurring at different points in the run (beginning,
middle, or end). The performance looks similar to that shows
in Figure 6 when only 15 LBs are modified with the other
conditions held constant. Performance is slightly worse in the

Automating ATLAS control room anomaly detection with deep learning 6

middle of the run and rather improved at the end of the run
(but significantly worse for the datasets with L1_MU14FCH
or L1_jXE120 modified), likely because the model is not as
effective at making predictions in that region so even with
clean data we observe an uptick in MSE for several features

Moving left to right across a ROC curve, we follow the re-
sults as the threshold MSE dividing clean and anomalous data
is lowered from infinity to zero. Figure 7 gives us a better vi-
sual of what is actually happening when such a threshold line
is drawn. The distinction between anomalous and clean data
points is much better defined in Figure 7a where the MSE for
the single feature is plotted. However, the actual classifica-
tion in our current model is based on the average MSE across
all features as seen in Figure 7b. We can see that if we are to
draw a line in 7b to include the modified initial data points, we
will be forced to label several other data points as anomalous.
This seems problematic until we remember that the test data
we modified may have had some anomalies of its own even
before we implemented our shift. For example, we notice a
spike in MSE around LB 700. Looking at Figure 8, we see
a large spike in several variables specifically at LB 700. So
these high MSE values in Figure 7b do generally correspond
to anomalies in the data — just not the anomalies we intro-
duced and tagged.

FIG. 7. MSE for anomalous test sample. a) MSE of L1_eEM26M,
the single feature that was modified in this dataset. b) Average MSE
across all features for this modified dataset.

To get a quantitative look at how our model performs with
the optimal threshold on average MSE, we used confusion ma-
trices. We take the optimal threshold from the corresponding
ROC curve and see the actual numbers for true positives, false
positives, true negatives, and false negatives. For example,
in the case of the L1_eEM26M-modified anomalous dataset
(which was one with an almost perfect ROC curve) we cor-
rectly identify 24 of the 25 anomalies and falsely classify 19 of
the 859 clean data points as anomalies. This is a 96% true pos-
itive rate with a 2.2% false positive rate. However, it is worth
noting that we only labeled the first 25 outputs as anomalous
because the first 30 LBs were the only values we manually
modified. But there are likely other anomalies present in the
data that naturally came up in the course of the run and if our
model is working well it should flag those as anomalous even
though we have labeled them as clean. Based on our plots of
the input data where the LBs our model flagged as anomalous
are indicated in red (see Figure 8), we feel confident that the
false positive rate is in fact lower than that which we report

here.

FIG. 8. Model-Identified Anomalies. Test anomalous dataset with
modified L1_eEM26M plotted by feature in blue. Red lines mark
LBs where model identified an anomaly.

Examining the data in Figure 8, we note that the red lines
marking our model’s anomalous labels frequently align with
significant spikes in the data. It is reassuring that these anoma-
lies align with visual changes in the data. It is however harder
to see anomalies resulting from small fluctuations in the data
extended over time. Future work should involve building
more representative labeled datasets that incorporate different
types of anomalies we may expect to show up so we can as-
sess how well our model performance may differ across these
cases.

We have done some initial exploration of basing our fi-
nal labeling output on the by feature plots (as seen in Figure
7a) with custom thresholds set for each feature such that if a
data point exceeds the threshold for any feature it is labeled
as anomalous. With a first pass run with this strategy, again
looking at the L1_eEM26M-modified anomalous dataset we
improved our true positive detection from 24/25 to 25/25 but
at a cost of an increased false positive rate from 19/859 to
48/859. However this still may be a better option to use for
the final AD step when we consider the earlier discussion of
how the false positive rate often picks up on real anomalies in
what we are naively calling clean data and can be improved
by tuning the threshold for each feature.

C. Muon end cap shutdown

While our tests on artificial anomalies give us a nice con-
trolled scenario where we can tune the cases we study, we
want to know whether our model can handle the real types of

Automating ATLAS control room anomaly detection with deep learning 7

anomalies that may pop up in detector operation. Towards this
goal, we pulled a case study run in which a sector of the muon
end cap (accounting for 1/8 of one side of the end-cap and for-
ward detectors or 1/32 of the full muon trigger detector) was
disabled on side C. For the first 100 LBs included in our sam-
ple, the detector operated as normal with the shutoff occurring
around LB number 650. Examining our plots of real vs pre-
dicted data by feature, we see the large drop in real data for
the MSPC_FW and MSPC_EC features while our predicted
curve continues relatively flat with just a small dip where the
drop occurs.

FIG. 9. Model Output with Disabled Muon End Cap Sector.

We can see similar output providing further evidence of the
model’s ability to detect such an anomaly by looking at the
MSE plots over LBs for the same two features where we see
the spike we expect. While these plots are what we expect
to see with the current setup of our model, this is not how
we would want the model to respond in real time in the con-
trol room because that would mean our model would contin-
uously be warning about anomalies for the entire rest of the
run. We just want to be warned of the anomaly when the ini-
tial change occurs, but then we would like the model to adapt
to the new conditions so we can continue to use it to look for
other anomalies that may pop up. For this reason, we recom-
mend adjusting the model so that it retrains at regular interval
throughout the course of the run, allowing it to take in the
new data and make predictions that better reflect the current
conditions of the detector.

D. Testing on Recent Run

To check how our model would work if it were to be used
today, we fed in a test run and observed where anomalies were
detected. In Figure 10 we plot the top 11 anomalies which are
those flagged when the threshold is set to eight. The anomalies
appear to align well with spikes in the rates but as mentioned

above, further work is required to assess the performance here
more quantitatively and to investigate performance across dif-
ferent types of anomalies.

FIG. 10. Identified Anomalies in Recent Run. The top 11 anomalies
identified by our model are plotted in red against the feature data for
run number 481510.

VI. CONCLUSION

The predictive LSTM autoencoder proposed here shows
promise for online AD in the ATLAS control room. After
iterating through several different machine learning models
and drawing inspiration from recent AD approaches, we have
optimized the procedure to take advantage of the benefits of
both autoencoders and LSTMs. We observed a high AD rate
of 96% and associated low false positive rate of around 2%
with errors of 5% applied across 30 minutes of data. Such
good results with such a simple model make us optimistic that
automated AD will be effective in the ATLAS control room
and that these tools can be made operational on a relatively
short time scale.

VII. FUTURE RESEARCH

We are optimistic that AD models can accomplish our goals
of improving control room operations, but before our model
can be implemented, there are a few more steps to undertake.
First and foremost, to shift our optimism to confidence in the
approach we have followed, the performance of our model
should be bench-marked against non-ML models for exam-
ple using a simple algorithm of the absolute difference be-
tween consecutive data points which we would expect to be

Automating ATLAS control room anomaly detection with deep learning 8

good at finding point fluctuations in the data but not very ef-
fective at picking up subtle trends. As it stands, we don’t have
a good sense of how our model performs for different kinds of
anomalies and these point anomalies are the easiest to see so
comparing with other methods can give us more insight and
we can create a test set with a wider range of anomaly classes
to assess performance.

One area for improvement is in optimizing the model for the
low pileup region. To do so, one should explore implementing
piece-wise normalization such that the region corresponding
to constant pileup is scaled separately from the region with
decaying pileup. This should help as the low pileup region
will not stick out so far into the outlier region where it is now
and is therefore somewhat ignored by the model. Another
option that may help with this problem as well as improve
performance overall is to separate the constant and decaying
pileup regions altogether and train two models separately each
with just one type of data. In the development process we at
times chose to use just the flat pileup region, but chose to use
the full data range for this initial model so as to best establish
the usefulness of such an approach in the general case.

A mandatory step before this can be used in the control
room is scaling up to a more extensive feature set. This in-
cludes incorporating some of the features we considered ini-
tially but decided to leave out such as empty rates where rates
are recorded when there is an empty bunch crossing. But be-
yond incorporating more trigger rates, we will also want to
consider expanding to include other types of data which may
include graph or image-based data.

In order to make the model more adaptable to changes in
conditions both between and within runs, we also recom-
mend implementing continuous learning in such a way that the
model retrains at regular periods incorporating the new data
that has been collected. This way, the model can make deci-
sions incorporating the most up-to-date data. So, for example,
in cases where a section of the detector is shut off during a
run, upon retraining it can learn to make predictions with this
new setup and stop warning about anomalies we are already

aware of.
In addition to this retraining, incorporating reinforcement

learning could be beneficial9. For a certain range of MSE
where the model is not especially confident if the data indi-
cates an anomaly or not, it could flag a shifter and they could
provide a label for the data which would allow the model to
improve its future decisions.

Finally, there is plenty of room for exploration in terms of
the actual architecture of the model. We have built a rather
simple network here as a starting point, but upgrades could
resolve some of the issues we have seen with variation in
performance depending on the feature the anomaly occurred
in and poor performance in certain regions of the sample.
For example, transformers could be used instead of LSTM
and a natural next step is to implement this as a variational
autoencoder which in fact, we already have a draft of that
requires some optimization work.

REFERENCES

1A. A. Pol, V. Azzolini, G. Cerminara, F. De Guio, G. Franzoni, M. Pierini,
F. Široký, and J.-R. Vlimant, “Anomaly detection using deep autoencoders
for the assessment of the quality of the data acquired by the cms experiment,”
23rd International Conference on Computing in High Energy and Nuclear
Physics, CHEP 2018 (2018).

2A. A. Pol, G. Cerminara, C. Germain, M. Pierini, and A. Seth, “Detector
monitoring with artificial neural networks at the cms experiment at the cern
large hadron collider,” Comput Softw Big Sci 3 (2019).

3A. A. Pol, V. Berger, G. Cerminara, C. Germain, and M. Pierini, “Trig-
ger rate anomaly detection with conditional variational autoencoders at the
cms experiment,” Machine Learning and the Physical Sciences Workshop at
the 33rd Conference on Neural Information Processing Systems (NeurIPS)
(2019).

4J. Strandberg, “Data preparation in atlas,”.
5M. Stockton, “The atlas level-1 central trigger,” Journal of Physics: Confer-
ence Series (2011).

6Analysis Software Group, “Pileup analysis configuration,”.
7SciKit-Learn, “Robustscaler,”.
8J. Starmer, “Long short-term memory (lstm), clearly explained,”.
9O. J. Parra, J. G. Pardiñas, L. D. P. Pérez, M. Janisch, S. Klaver, T. Lehéricy,
and N. Serra, “Human-in-the-loop reinforcement learning for data quality
monitoring in particle physics experiments,” CHIPP 2024 Annual meeting
(2024).

